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Dispersion properties of Hollow-core PCF or micro-structured PCFs are investigated via Finite Element Method (FEM). FEM 
is attractive simulation technique as it can handle complicated structure geometries very effectively. In this paper, the 
dispersion characteristics, mode effective refractive index,  non-linear co-efficient and effective mode area of 3-ring 
hexagonal hollow-core PCFs have been investigated by using FEM. By suitable designing of 3-ring  air holes of hollow-core 
photonic crystal fiber at operating wavelength from 0.65µm to 1.55μm nice modal field patterns of guided light were found. 
The core diameter, pitch and air hole diameter of 3-ring PCF designed in our investigation are 0.2 µm, 2.3 µm and 1.38 µm 
respectively. A nearly zero dispersion of the newly designed PCF is then observed at wavelength 0.98 µm. 
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1. Introduction 

 
 Now a day optical fibers have diverse applications in 

telecommunications, sensors, soliton, lasers, medical 
instrumentations etc. In the optical fiber, light is being 
guided by total internal reflection principle (TIR) [1]. 
There are some limitations of conventional optical fibers: 
for example, dispersion is normal for wavelength 1.3µm 
and anomalous at longer wavelengths. Optical non-
linearity in conventional optical fiber is very small. To 
overcome these limitations of the conventional optical 
fiber, an alternate fiber called photonic crystal fiber (PCF) 
is developed [2-6]. A very important feature is that it can 
be made of a single material, in comparison to all other 
type of fibers, which are made of two or more materials. 
Photonic crystals are materials with periodic structure on 
the order of wavelength of light, i.e. nanometers. 
Essentially, photonic crystals contain regularly repeating 
internal regions of high and low dielectric constant. The 
governing property of these crystals is a photonic band 
gap: ranges of frequency for which light cannot propagate 
through the structure. Photonic crystal fibers (PCFs) are 
made from single material such as silica glass with an 
array of microscopic air channels running along its length. 
The primary difference between photonic crystal fiber and 
conventional fiber is that photonic crystal fibers feature an 
air-silica cross section, where as standard optical fibers 
have an all glass cross-section. Photonic crystal fibers can 
exhibit unique dispersion characteristics, achieve very 
high birefringence, provide single mode operation for very 
short wavelength range offer very large or low non 
linearity. Moreover, light can propagate through it with 
very low loss in certain wavelength range. The hexagonal 
triangular-based cladding structure is used, where 
refractive index of air-core and silica are 1 and 1.45 
respectively. By manipulating circular air hole diameter 

‘d’, pitch ‘Λ’ and air core diameter d’  , it is possible to 
control the properties of PCF such as dispersion and 
leakage loss very easily. 

The large variety of holes, shapes and arrangements in 
PCF demands the use of numerical method that can handle 
arbitrary cross-sectional shapes to analyze this kind of 
structures. Many numerical techniques have been used to 
analyze photonic crystal fibers, like fourier transform 
method, plane wave expansion method, effective index 
method, beam propagation method, finite time domain 
method. Here we have used finite element method, which 
is suitable for such analysis as it can handle complicated 
structure geometries very effectively.  

 
 
2. Theory and numerical analysis 
 
The finite element method (FEM) is generally 

advantageous in complex geometries of photonic crystal 
fiber. It is a full vector implementation for both leaky 
modes and cavity modes for two dimensional Cartesian 
cross sections in cylindrical co-ordinates. First and second 
order interpolant basis are provided for each triangular 
elements. PEC (Perfect electrical conductor) or PML 
(perfectly matched layer) boundary conditions selected 
independently for each direction. We begin with the 
source-free time harmonic form of the vector wave 
equation in an arbitrary, anisotropic lossy media[7, 8]. 

 

          (1) 
 

Subject to vanishing field boundary conditions at the 
domain edges  
 

                                  (2)                     
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 The complex diagonal tensors s and  represent co-
ordinates stretching and the dielectric material 
respectively. Throughout the domain s is the identity 
tensor, but in the boundary layer, it has the following form 
 

 
 

                      (3)                                
    
  is the  loss tangent,  is the distance from the edge 
and L is the thickness of the layer, known as the perfect 
matched layer (PML). The tensor elements in the PML are 
matched to those in the rest of the domain according the 
prescription,   to produce arbitrarily small 
reflection at the PML interface for all frequencies and 
angle of incidence. The PML is terminated with a perfect 
electric conductor (PEC) boundary condition (eq. 3). 

The finite element method does not solve the 
boundary value problem (eq. 1-3) directly but rather a 
related one based on a variational expression or functional, 
constructed from the operator of the differential equation 
(1). 

This functional in two dimensions over domain A is 
given by   
 

      (4) 
 

For propagating and leaky modes [9],a separable 
electric field becomes  
 

 
 

where,  is the modal propagation constant along   z.  

 
Instead of finding an expansion basis over the entire 

domain, which can be difficult in general, the finite 
element method sub-divides the domain into a collection 
of elements for which a simple basis can be defined. This 
basis vanishes outside the element, so that the final 
solution is just a summation over the solution of all the 
elements. 

For hybrid node/edge FEM, the transverse 
components are expanded in a vector (edge element) basis. 

 

     (5) 
 

where, ETi are the values of the field along each edge. The 
longitudinal component (perpendicular to the plane of the 
element) is represented by a scalar (node element) basis. 
 
 

                       (6) 
 
where, Ezi are the values of the field and Ni are the basis at 
each node. The basis dimension n’ depends on the 
geometry of the element and the order of the interpolation. 
Since the Euler Langrangian equations of the functional 
correspond to original wave equations the solution of latter 
equations can be approximated by extremization of the 
functional. The functionals are approximated using 
interpolation of polynomial basis functions and functional 
are discretized in a finite no. of element within the 
computational domain [10-23].  
 

                             (7) 
 
Finally, we will get matrix generalized eigen-value 

equation of the form  
                                                               

                (8) 
 
 

3. Results and discussions 
 
 

  Λ 
                          Air hole                d 
   
                                              Silica   Air-core 

 
Fig. 1. (Hollow-core photonic crystal fiber); refractive 
index of silica and air hole are 1.45 and ,1 respectively. 

 
(i)For Structure-1(d=1.38µm, d’=0.2µm, Λ=2.3µm),                        
(ii)  structure-2(d=1.38µm, d’=0.3µm, Λ=2.3µm)  
(iii)  structure-3(d=1.38µm, d’=0.4µm, Λ=2.3µm)          

 
We have investigated a hollow core PCF with 

triangular lattice of air holes shown in Fig. 1, which has 
three rings of air hole with same diameter d=1.38µm and 
pitch (distance between two center of air hole)  Λ=2.3µm 
but different air-core (d’) in the central position. The 
refractive index of air holes and silica are 1 and 1.45 
respectively. We have varied air core d′ from 0.2µm to 
0.4µm keeping other parameter unchanged. By using 
Finite Element Method [24], we have analyzed modal field 
patterns and effective refractive index of the fundamental 
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mode at operating wavelengths from 0.65µm to 1.55µm. It 
is clear that the effective index neff decreases as d’ 
increases especially in the long wavelength region and 
effective refractive index is maximum as shown in Fig. 2. 
It is clear that modal pattern is better (effective index is 
maximum for this) in 1st case i.e. d′ = 0.2 µm which 
clearly indicates that loss of propagated light is less in 1st 
structure than that of other at wavelength 0.65µm and 
1.55µm given in Fig. 3 and Fig. 4. It might be mentioned 
here that mode pattern becomes lossy at wavelength less 
than 0.65 µm and greater than 1.55µm.  

 

 
 

Fig. 2. Simulated   effective   index of the PCF with fixed 
pitch Λ=2.3µm and three ring holes diameter are 1.38µm 

for core diameter d’=0.2µm (blue), d’=0.3µm (green) 
and d’=0.4µm (sky blue) respectively. 

 
 

 
 

Fig. 3. Simulated transverse electric modal field pattern 
(one fourth part) of hollow core PCF at wavelength 
0.65µm where real and imaginary refractive index are 

1.448549 and 2.486-e-009  for structure-1,(all three ring 
air     hole    diameter    d=1.38µm,    air   core  diameter  
                      d’=0.2µm and pitch Λ=2.3µm). 

 
Once the modal real effective indices are solved, the 

geometrical dispersion parameter Dg can be obtained as 
  
 

                  (9)                    
 
 
where c is the velocity of the light in   vacuum and λ is the 
operating wavelength, Re[neff] is the real part of effective 
index. The total dispersion has been  calculated as the sum 
of the geometrical dispersion Dg (or waveguide dispersion) 
and the material dispersion(Dm) in the first order 
approximation. 
 

              (10)                    
    
 
where г is the confinement factor in silica, which is close 
to unity for most practical PCFs as the modal power is 
confined almost all in the silica with high refractive index. 
Total dispersion are calculated for three different 
structures having air core diameter d’=0.2 µm, 0.3 µm and 
0.4 µm respectively using sellmeier equation (9,10). The 
zero dispersion occures for three structures under studied 
at wavelength 0.98µm, 1µm and 1.03µm respectively 
given in Fig. 5. The position of zero dispersion shifts 
towards greater wavelength as diameter of  air-core 
increases. An ultra flattened dispersion of 
0  is obtained near wavelength 1.55µm.   

The effective area Aeff and nonlinear co-efficient γ’  of 
the hollow core PCF can also  be calculated by using the 
equation 

 
 

                 (11) 

and                                                   

         (12) 
 
 
where E is the electric field, λ is the wavelength and n2 is 
the non-linear refractive index. The calculated effective 
area Aeff are 1.953 µm2 and 2.515µm2 at wavelengths 
0.65µm and 1.55µm respectively as shown in Fig. 6. The 
non-linear co-efficient corresponding to effective area 
1.953 µm2 is 7.177 W-1 km-1 where as for effective area 
2.515µm2 it is very high having value 14.775W-1km-1. 
Thus structure under studied is best suited for wavelength 
1.55 µm. 
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Fig. 4. Simulated transverse electric modal field pattern 
(one fourth part)  of hollow core PCF at wavelength 
1.55µm where  real and imaginary effective refractive 
index are 1.410637 and -1.107e-008 for structure-1(all 
three  ring air hole diameter d=1.38µm,air core diameter  
                      d’=0.2µm and pitch Λ=2.3µm). 

 

 
 

Fig. 5. Wavelength  dependence  of  total  dispersion  of 
hollow core PCF, where Λ=2.3µm, d=1.38µm and  for 
blue curve d’=0.2µm, for green curve d’= 0.3µm and  

red curve d’=0.4µm, respectively. 
                                     

 
 

Fig. 6. Effective  area  of  modal field pattern of hollow 
core PCF for three different structure where Λ=2.3µm, 

d’=0.2,0.3,0.4 µm and d=1.38 µm. 
4. Conclusions 
 
A 3-ring hexagonal hollow-core PCFs is proposed 

with fiber parameters Λ=2.3µm, d’=0.2µm and d=1.38 µm 
which is suitable for telecommunication. The loss of 
propagated light is very small for proposed structure-1 i.e.  
nice modal patterns for wavelengths 0.65 µm and 1.55µm 
are achieved. The dispersion properties of newly designed 
PCF are also studied and the zero dispersion is observed at 
wavelength 0.98 µm. Further, effective areas Aeff at 
wavelength 0.65 µm and 1.55µm are found to be 1.953 
µm2 and 2.515µm2 respectively. The non-linear co-
efficient are also calculated for two wavelengths. It is 
found that non-linear co-efficient (14.775W-1km-1) 

corresponding to the effective area 2.515µm2 is large at 
wavelength 1.55µm. The ultra flattened dispersion of 
0  is also obtained near wavelength 
1.55µm. Thus, we can conclude that an introduction of a 
small air-core provides us more flexibility and possibilities 
than index-guided PCF to obtain surprising performances 
and by proper designing of hollow-core photonic crystal, 
non lossy propagation of guided wave can be achieved. 
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